

Canal Current

A wave of information for Cape Coral's Canalwatch volunteers

Newsletter: 3rd and 4th Quarter 2018

Environmental News

Native Plant profile

New Okeechobee Management Operations

The U.S. Army Corps of Engineers (USACE) is seeking public input on the development of a new water release schedule for Lake Okeechobee. The current Lake Okeechobee Regulation Schedule (LORS) has been in operation since 2008. The new proposed schedule will be the Lake Okeechobee System Operating Manual (LOSOM). LOSOM will base water releases on lake levels, expected rainfall, time of year, salinity of the estuaries (both east and west coast) and other conditions. USACE is currently developing LOSOM and is requesting comments until April 22nd. All comments will be considered and will include such stakeholder interest as: drinking water supply, recreation, agriculture, water releases to the estuaries and environmental needs. Please consider contacting USACE regarding your comments or concerns regarding the development of LOSOM. Comment period ends on April 22nd.

More information and a link to post comments can be found here

https://www.saj.usace.army.mil/LOSOM/

Questions? Comments? Let us know!

(239)574-0785

Harry: hphillips@capecoral.net Katie: kmcbride@capecoral.net

Vallisneria Americana American eel grass

American eel-grass, sometimes referred to as tape-grass, is a submersed aquatic perennial plant that is native to much of north America. Eel-grass is found in many freshwater and brackish habitats throughout its native range. This includes ponds, lakes, rivers and estuaries in all ranges of flow; from still waters to swift currents. Eel grass is found locally within Cape Coral's canals and the Caloosahatchee River. Despite the common name, eel-grass is not a true grass, such as one that grows in lawns. However, there are some similarities. Eel-grass does spread by runners under the sediment and can often grow in such densities that it resembles an underwater pasture or grassland. In shallower waterbodies it often "tops out" in which the blade like leaves are sometimes floating at the water surface. Eel-grass leaves develop and grow from clusters of roots and there are separate male and female flowers. Male flower structures break off and float to pollinate the female flowers that develop on long stalks; fruiting ensues. Eel-grass fruit is a small elongated capsule which contain numerous seeds.

Eel-grass is an important submerged plant that provides habitat for countless aquatic and marine animal species. It is also valuable for water quality in its ability to uptake nutrients and improve water clarity. Home applications include aquaria, ponds or water gardens.

Photos courtesy of UF/IFAS Center for Aquatic and Invasive Plants.

Eel grass, tape grass Vallisneria americana Photo by Vic Ramey © 2002 University of Florida

	bd = be	low dete	ection		benchr	nark num	bers: M	arked d	ata are i	n the hig	hest 20	l% of valu	ues foun	d by Ha	ınd et. al	, 1988.			
			July	2018					Augus	t 2018			September 2018						
	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04	Avg
	<1.0	<1.0	none	set	<2.0	<0.46	< 1.0	<1.0	none	set	<2.0	<0.46	< 1.0	<1.0	none	e set	<2.0	<0.46	TSI
3F	bd	0.11	0.05	0.7	0.7	0.14													50.59
5D							bd	bd	0.09	0.9	0.9	0.12							63.18
6F	bd	bd	0.05	1.1	1.1	0.26	bd	bd	0.09	1.2	1.2	0.28	bd	bd	0.09	0.1	0.1	0.27	44.19
7E	bd	0.16	0.05	0.9	0.9	0.24													68.70
10C	bd	0.07	0.05	0.6	0.6	0.11	bd	bd	0.09	0.6	0.6	0.09							48.36
11E	bd	bd	0.09	14.0	14.0	1.17													92.74
16E	bd	bd	0.09	0.4	0.4	0.02	bd	bd	0.09	0.5	0.5	0.03	bd	bd	0.09	0.09	0.1	0.02	44.65
16H	bd	bd	0.09	0.4	0.4	0.02													37.59
18J							bd	bd	0.09	0.4	0.4	0.05	bd	bd	0.09	0.09	0.1	0.04	44.86
18K	bd	bd	0.09	0.5	0.5	0.04	bd	bd	0.09	0.5	0.5	0.05	bd	bd	0.09	0.09	0.1	0.04	49.13
18M							bd	bd	0.09	0.6	0.6	0.07	bd	bd	0.09	0.1	0.1	0.06	44.37
19D							bd	bd	0.09	1.9	1.9	0.30							77.86
19K	bd	bd	0.09	1.8	1.8	0.26							bd	0.10	0.09	0.7	0.8	0.24	63.80
21D	bd	bd	0.09	0.6	0.6	0.10	bd	bd	0.09	0.7	0.7	0.11							54.28
28D	bd	bd	0.09	0.3	0.3	0.04	bd	bd	0.09	2.5	2.5	0.12	bd	bd	0.09	0.1	0.1	0.05	51.36
38B	bd	bd	0.09	0.6	0.6	0.03							bd	bd	0.09	0.1	0.1	0.03	41.23
41B	bd	bd	0.09	0.7	0.7	0.04	bd	bd	0.09	0.5	0.5	0.03	bd	bd	0.09	0.1	0.1	0.03	31.05
45D	bd	bd	0.09	0.5	0.5	0.02	bd	bd	0.09	0.5	0.5	0.03	bd	bd	0.09	0.1	0.1	0.03	40.83
48A	bd	bd	0.09	0.5	0.5	0.01	bd	bd	0.09	0.4	0.4	0.02	bd	bd	0.09	0.1	0.1	0.03	38.47
581	bd	bd	0.09	0.8	0.8	0.03							bd	bd	0.09	0.1	0.1	0.03	38.52
58J	bd	bd	0.09	1.1	1.1	0.03	bd	bd	0.09	1.1	1.1	0.05	bd	bd	0.09	0.1	0.1	0.05	45.44
59C	bd	bd	0.09	0.7	0.7	0.02	bd	bd	0.09	0.5	0.5	0.04	bd	bd	0.09	0.1	0.1	0.03	41.24
59D	bd	bd	0.09	0.6	0.6	0.02							bd	bd	0.09	0.1	0.1	0.03	44.26
64B							bd	0.14	0.09	0.7	0.84	0.14							45.27

65C	bd	bd	0.09	1.6	1.6	0.13	bd	0.06	0.09	1.0	1.06	0.14	0.05	0.20	0.09	0.1	0.1	0.22	52.15	
66D	bd	bd	0.09	0.9	0.9	0.03	bd	bd	0.09	0.9	0.9	0.14	bd	bd	0.09	0.1	0.1	0.07	44.47	
71B	bd	bd	0.09	0.9	0.9	0.07	bd	bd	0.09	0.7	0.7	0.04	bd	bd	0.09	0.1	0.1	0.10	48.37	
72C	bd	bd	0.09	0.8	0.8	0.09	bd	bd	0.09	0.8	0.8	0.06							72.36	
72E	bd	bd	0.09	0.8	0.8	0.09													48.74	
74C	bd	bd	0.09	0.8	0.8	0.08													50.92	
82A	bd	bd	0.09	0.8	0.8	0.03	bd	bd	0.09	0.8	0.8	0.05	bd	bd	0.09	0.1	0.1	0.05	50.73	
83C	bd	bd	0.09	1.0	1.0	0.02							bd	bd	0.09	0.1	0.1	0.04	37.84	
89A	bd	0.06	0.09	1.5	1.5	0.29	bd	bd	0.09	1.0	1.0	0.21							66.67	
90A	bd	bd	0.09	1.3	1.3	0.05	bd	bd	0.09	1.0	1.0	0.03							59.54	
Median		0.09	0.09	0.80	0.80	0.04		0.10	0.09	0.70	0.80	0.06		0.15	0.09	0.09	0.09	0.04	48.37	
Max		0.16	0.09	14.00	14.00	1.17		0.14	0.09	2.50	2.50	0.30		0.20	0.09	0.70	0.80	0.27	92.74	
NO2 =	Nitrite (ind	organic)		= Total Kj n (organic		High levels of nutrients in our canals can indicate the presence of fertilizer						TSI = Tro	phic Sta	te Index,	a quick i	indicator	of cana	l health.	rsı =	
N03 = 1	Nitrate (in	organic)		: Total Nitr ganic + org		runoff or effluent from wastewater or septic systems. Excessive nutrients						Trophic State Index, a quick indicator of canal health. A total of 27 sites this quarter scored as GOOD (<60). 4 sites							25	
NH3 = Ai	mmonia (i	norganic)	TP04 =	= Total Ph	osphate	can lead to nuisance plant growth and algal blooms.						scored FAIR (60-70), and 3 scored POOR (>70). Summer 2018 was a challenging time for water quality for much of South Florida. Red tide conditions continued off the coast in the								
All nutrien	t concent	trations sho	wn in mg	/L								Gulf of Mexico for all of SW Florida. The Caloosahatchee River was								
												1			ter relea					
												ample r	ainfall fo	or the are	a, the sta	ate of the	River co	ntinued	to	
														•	cteria an				/e	
															nis repor					
														from ups r tempera	stream, a	dryer, co	ooler we	ather pa	ttern	
												and coo	ier water	tempera	itures.					

								nbers: Marked data are in the highest 20% of val												
			Octobe	er 2018					lovemb	er 201	В		September 2018							
	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04		
	<1.0	<1.0	none	e set	<2.0	<0.46	< 1.0	<1.0	none	e set	<2.0	<0.46	<1.0	<1.0	none	e set	<2.0	<0.46	TSI	
3F	bd	bd	0.1	0.6	0.6	0.11	bd	bd	0.1	0.1	0.1	0.12							37.61	
5D	bd	bd	0.1	0.7	0.75	0.19	bd	bd	0.1	0.7	0.7	0.12	bd	bd	0.1	0.4	0.4	0.10	45.05	
5H													bd	bd	0.1	0.7	0.7	0.10	48.94	
6F	bd	bd	0.1	0.6	0.6	0.25	bd	bd	0.1	0.1	0.1	0.15	bd	bd	0.1	0.4	0.4	0.13	42.26	
7E													bd	bd	0.1	0.3	0.3	0.14	34.89	
10C							bd	bd	0.1	0.1	0.1	0.12	bd	bd	0.1	0.5	0.5	0.08	37.50	
11E	bd	0.27	0.1	0.5	0.77	0.25	bd	bd	0.1	0.2	0.2	0.16	bd	bd	0.1	0.6	0.6	0.15	52.74	
12H	bd	0.11	0.1	0.6	0.71	0.22	bd	bd	0.1	0.2	0.2	0.14	bd	bd	0.1	0.4	0.4	0.15	41.08	
16E	bd	bd	0.1	0.4	0.4	0.03	bd	bd	0.1	0.4	0.4	0.05	bd	bd	0.1	0.6	0.6	0.03	39.61	
16H	bd	bd	0.1	0.2	0.2	0.03	bd	bd	0.1	0.5	0.5	0.08							34.48	
18J	bd	bd	0.1	0.3	0.3	0.06	bd	0.13	0.1	0.3	0.3	0.05	bd	0.20	0.1	0.5	0.5	0.04	50.63	
18K							bd	bd	0.1	0.2	0.2	0.06	bd	0.07	0.1	0.6	0.6	0.06	47.62	
18L	bd	bd	0.1	0.6	0.6	0.18	bd	bd	0.1	0.2	0.2	0.15	bd	bd	0.1	0.5	0.5	0.18	45.37	
18M	bd	bd	0.1	0.3	0.3	0.07	bd	bd	0.1	0.4	0.4	0.07	bd	0.10	0.1	0.5	0.5	0.06	44.59	
19D	bd	bd	0.1	1.3	1.3	0.34	bd	bd	0.1	0.1	0.1	0.16	bd	bd	0.1	0.5	0.5	0.35	44.41	
19K	bd	bd	0.1	1.1	1.1	0.26	bd	bd	0.1	0.1	0.1	0.17	bd	bd	0.1	0.5	0.5	0.22	38.92	
21D	bd	bd	0.1	0.3	0.3	0.14	bd	bd	0.1	0.2	0.2	0.14	bd	bd	0.1	0.4	0.4	0.14	35.70	
28D	bd	bd	0.1	0.2	0.2	0.04	bd	bd	0.1	0.5	0.5	0.05	bd	bd	0.1	0.5	0.5	0.06	38.24	
38B	bd	bd	0.1	0.4	0.4	0.05	bd	bd	0.1	0.4	0.4	0.05							12.51	
41B	bd	bd	0.1	0.4	0.4	0.05	bd	bd	0.1	0.5	0.5	0.05	bd	bd	0.1	0.5	0.5	0.04	44.14	
45D	bd	bd	0.1	0.2	0.2	0.03	bd	bd	0.1	0.1	0.1	0.06	bd	bd	0.1	0.4	0.4	0.02	29.58	
48A							bd	bd	0.1	0.6	0.6	0.05	bd	bd	0.1	0.3	0.3	0.02	44.53	
581	bd	bd	0.1	0.3	0.3	0.03	bd	bd	0.1	0.2	0.2	0.12	bd	bd	0.1	0.5	0.5	0.18	40.75	
58J	bd	bd	0.1	0.6	0.6	0.05	bd	bd	0.1	0.8	0.8	0.10	bd	bd	0.1	0.6	0.6	0.14	49.88	
59C	bd	bd	0.1	0.3	0.3	0.04	bd	bd	0.1	0.1	0.1	0.09	bd	bd	0.1	0.5	0.5	0.07	39.16	
59D	bd	bd	0.1	0.6	0.6	0.07	bd	bd	0.1	0.5	0.5	0.13	bd	bd	0.1	0.5	0.5	0.13	43.48	
64B	bd	0.11	0.1	0.2	0.31	0.15													34.34	

64F	bd	0.09	0.1	0.2	0.29	0.18													40.19
65C	bd	bd	0.1	0.3	0.3	0.18													22.92
66D	bd	bd	0.1	0.3	0.3	0.07	bd	bd	0.1	0.5	0.5	0.07	bd	bd	0.1	0.5	0.5	0.05	49.47
69A							bd	bd	0.1	0.8	0.8	0.19	bd	bd	0.1	0.7	0.7	0.18	50.32
71B							bd	0.07	0.1	0.2	0.2	0.11							24.13
72C	bd	bd	0.1	0.3	0.3	0.13	bd	bd	0.1	0.2	0.2	0.11							40.35
72E	bd	bd	0.1	4.8	4.8	0.13	bd	bd	0.1	0.3	0.3	0.12	bd	bd	0.1	0.7	0.7	0.09	47.79
74C	bd	bd	0.1	0.2	0.2	0.15	bd	bd	0.1	0.3	0.3	0.14	bd	bd	0.1	0.6	0.6	0.12	41.43
82A	bd	bd	0.1	0.3	0.3	0.06	bd	bd	0.1	0.4	0.4	0.06	bd	bd	0.1	0.4	0.4	0.03	48.75
83C	bd	bd	0.1	0.4	0.4	0.05	bd	bd	0.1	0.2	0.2	0.06							42.93
89A	bd	bd	0.1	0.6	0.8	0.26	bd	bd	0.1	0.4	0.4	0.20	bd	bd	0.1	0.7	0.7	0.23	55.01
90A							bd	bd	0.1	0.8	0.8	0.08	bd	bd	0.1	0.6	0.60	0.03	51.80
Median	1	bd	0.10	0.40	0.40	0.07		bd	0.10	0.30	0.30	0.10		0.10	bd	0.50	0.50	0.10	42.26
Max		0.27	0.10	4.80	4.80	0.34		0.13	0.10	0.80	0.80	0.20		0.20	0.10	0.70	0.70	0.35	55.01
NO2 = Nitrite (inorganic) TKN = Total Kjeldahl Nitrogen (organic + NH4)																			
NO2 =	Nitrite (ind	organic)				_			s in our o			TSI = Tro	phic Sta	te Index,	a quick i	indicator	of cana	l health.	TSI =
	Nitrite (ind Nitrate (ind		Nitroge TN =		+ NH4) rogen	can in runoff septic	dicate the or efflue system	ne prese ent from s. Exce	nce of fe wastewa essive nu	rtilizer Iter or Itrients		Trophic A total o	State Inc of 27 site	dex, a qui s this qu	ick indica arter sco	ator of ca ored as G	anal heal OOD (<6	th.	
NO3 = I		organic)	Nitroge TN = (inorg	n (organic = Total Niti	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total o scored F Summer	State Inc of 27 site AIR (60- 2018 wa	dex, a qui s this qu 70), and as a chal	ick indica arter sco 3 scored lenging t	ator of ca	anal heal OOD (<60 >70). vater qua	th. 0). 4 site	es much of
NO3 = I	Nitrate (in	organic)	Nitroge TN = (inorg	n (organic = Total Nitr ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total o scored F Summer South Fl	State Inc of 27 site AIR (60- 2018 wa orida. Re	dex, a qui s this qu 70), and as a chal ed tide co	ick indica arter sco 3 scored lenging to anditions	ator of ca ored as G d POOR () ime for w	anal heal OOD (<60 >70). vater qua ed off the	th. 0). 4 site ality for r e coast in	es much of n the
NO3 = I	Nitrate (in	organic) norganic)	Nitroge TN = (inorg	n (organic = Total Nitr ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total of scored F Summer South Fl Gulf of N still infl	State Inc of 27 site FAIR (60- 2018 wa orida. Re Mexico fo uenced b	dex, a qui s this qu 70), and as a chal ed tide co or all of S by the wa	ick indica arter sco 3 scored lenging to anditions SW Florid ter relea	ator of ca ored as G I POOR (2 ime for v continue da. The Ca ses up st	enal heal OOD (<60 >70). vater qua ed off the aloosaha ream, an	th. 0). 4 site lity for recoast in atchee Ri d combi	es much of n the iver was ned with
NO3 = I	Nitrate (in	organic) norganic)	Nitroge TN = (inorg	n (organic = Total Nitr ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total of scored F Summer South FI Gulf of N still infl	State Inc of 27 site AIR (60- 2018 wa orida. Re Mexico fo uenced b ainfall fo	dex, a qui s this qu 70), and as a chal ed tide co or all of S by the wa or the are	ick indica arter sco 3 scored lenging to anditions SW Florid ter relea ea, the sta	ator of ca ored as G d POOR () ime for w s continu da. The Co ses up st ate of the	anal heal OOD (<60 >70). vater qua ed off the aloosaha ream, an River co	th. O). 4 site elity for recoast in atchee Ri ed combinationed	es much of n the iver was ned with to
NO3 = I	Nitrate (in	organic) norganic)	Nitroge TN = (inorg	n (organic = Total Nitr ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total of scored F Summer South FI Gulf of N still infl ample re deterior	State Income State	dex, a qui s this qu 70), and as a chal ed tide co or all of S by the wa or the are Cyanoba	ick indica arter sco 3 scored lenging to anditions SW Florid ter relea ea, the sta	ator of ca ored as G d POOR () ime for w s continue da. The Ci ses up st ate of the	anal heal OOD (<60 >70). vater qua ed off the aloosaha ream, an River co de condit	th. O). 4 site elity for re coast in atchee Ri d combinations have	much of n the iver was ned with to ve
NO3 = I	Nitrate (in	organic) norganic)	Nitroge TN = (inorg	n (organic = Total Nitt ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve	State Income State	dex, a qui s this qu 70), and as a chal ed tide co or all of S by the wa or the are Cyanoba time of th	ick indica arter sco 3 scored lenging to anditions SW Florid ter relea ea, the sta cteria an his repor	ator of ca ored as G d POOR () ime for w s continue da. The Ca ses up st ate of the nd Red Tio t. This is	anal heal OOD (<60 >70). vater qua ed off the aloosaha ream, an River co de condit attribute	th. O). 4 site ality for recoast in atchee Ri at combinations have	much of n the iver was ned with to ve
NO3 = I	Nitrate (in	organic) norganic)	Nitroge TN = (inorg	n (organic = Total Nitt ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve decreas	State Income State	dex, a qui s this qu 70), and as a chal ed tide co or all of S by the wa or the are Cyanoba time of th from ups	ick indica arter sco 3 scored lenging to nditions SW Florid ter relea ea, the sta cteria ar nis repor stream, a	ator of ca ored as G d POOR () ime for w s continue da. The Ci ses up st ate of the	anal heal OOD (<60 >70). vater qua ed off the aloosaha ream, an River co de condit attribute	th. O). 4 site ality for recoast in atchee Ri at combinations have	much of n the iver was ned with to ve
NO3 = I	Nitrate (in	organic) norganic)	Nitroge TN = (inorg	n (organic = Total Nitt ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer Iter or Itrients		Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve decreas	State Income State	dex, a qui s this qu 70), and as a chal ed tide co or all of S by the wa or the are Cyanoba time of th	ick indica arter sco 3 scored lenging to nditions SW Florid ter relea ea, the sta cteria ar nis repor stream, a	ator of ca ored as G d POOR () ime for w s continue da. The Ca ses up st ate of the nd Red Tio t. This is	anal heal OOD (<60 >70). vater qua ed off the aloosaha ream, an River co de condit attribute	th. O). 4 site ality for recoast in atchee Ri at combinations have	much of n the iver was ned with to ve
NO3 = I	Nitrate (in	organic) norganic)	Nitroge TN = (inorg	n (organic = Total Nitt ganic + org = Total Ph	: + NH4) rogen ganic)	can in runoff septic	dicate the or efflue system ad to nui	ne prese ent from s. Exce sance p	nce of fe wastewa essive nu lant grov	rtilizer ater or trients		Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve decreas	State Income State	dex, a qui s this qu 70), and as a chal ed tide co or all of S by the wa or the are Cyanoba time of th from ups	ick indica arter sco 3 scored lenging to nditions SW Florid ter relea ea, the sta cteria ar nis repor stream, a	ator of ca ored as G d POOR () ime for w s continue da. The Ca ses up st ate of the nd Red Tio t. This is	anal heal OOD (<60 >70). vater qua ed off the aloosaha ream, an River co de condit attribute	th. O). 4 site ality for recoast in atchee Ri at combinations have	much of n the iver was ned with to ve

Upcoming Events

Keep Lee County Beautiful and its sponsors are holding their annual Great American Cleanup. This cleanup event will take place on April 13th at numerous locations throughout the County. For more information and registration for the event, please use the link below or contact KLCB at (239) 334- 3488. The Great American Cleanup is a great way to help your community and the environment. http://www.klcb.org/great-american-cleanup.html

Spring plant sale and rain barrel workshop at Rotary Park. Come celebrate spring with a variety of plants! On April 20th at Rotary Park, native, edible, and butterfly attracting will be among the many different plants offered. Don't miss out on this one day only sale.

Accompanying the plant sale is the rain barrel workshop. Lee County Master Gardeners will be on hand to teach about the benefits of collecting and storing stormwater for home use. Pre-registration required. The rain barrel course and one rain barrel is \$45 per person. For more information on both the plant sale and the rain barrel workshop, please contact Rotary Park at 239-549-4606.

City of Cape Coral Environmental Resources Division C/O Canalwatch Volunteer Program P.O. Box 150027 Cape Coral, FL 33915