Canal Current A wave of information for Cape Coral's Canalwatch volunteers Newsletter: 3rd and 4th Quarter 2018 #### **Environmental News** ## **Native Plant profile** ### **New Okeechobee Management Operations** The U.S. Army Corps of Engineers (USACE) is seeking public input on the development of a new water release schedule for Lake Okeechobee. The current Lake Okeechobee Regulation Schedule (LORS) has been in operation since 2008. The new proposed schedule will be the Lake Okeechobee System Operating Manual (LOSOM). LOSOM will base water releases on lake levels, expected rainfall, time of year, salinity of the estuaries (both east and west coast) and other conditions. USACE is currently developing LOSOM and is requesting comments until April 22nd. All comments will be considered and will include such stakeholder interest as: drinking water supply, recreation, agriculture, water releases to the estuaries and environmental needs. Please consider contacting USACE regarding your comments or concerns regarding the development of LOSOM. Comment period ends on April 22nd. More information and a link to post comments can be found here https://www.saj.usace.army.mil/LOSOM/ Questions? Comments? Let us know! (239)574-0785 Harry: hphillips@capecoral.net Katie: kmcbride@capecoral.net Vallisneria Americana American eel grass American eel-grass, sometimes referred to as tape-grass, is a submersed aquatic perennial plant that is native to much of north America. Eel-grass is found in many freshwater and brackish habitats throughout its native range. This includes ponds, lakes, rivers and estuaries in all ranges of flow; from still waters to swift currents. Eel grass is found locally within Cape Coral's canals and the Caloosahatchee River. Despite the common name, eel-grass is not a true grass, such as one that grows in lawns. However, there are some similarities. Eel-grass does spread by runners under the sediment and can often grow in such densities that it resembles an underwater pasture or grassland. In shallower waterbodies it often "tops out" in which the blade like leaves are sometimes floating at the water surface. Eel-grass leaves develop and grow from clusters of roots and there are separate male and female flowers. Male flower structures break off and float to pollinate the female flowers that develop on long stalks; fruiting ensues. Eel-grass fruit is a small elongated capsule which contain numerous seeds. Eel-grass is an important submerged plant that provides habitat for countless aquatic and marine animal species. It is also valuable for water quality in its ability to uptake nutrients and improve water clarity. Home applications include aquaria, ponds or water gardens. Photos courtesy of UF/IFAS Center for Aquatic and Invasive Plants. Eel grass, tape grass Vallisneria americana Photo by Vic Ramey © 2002 University of Florida | | bd = be | low dete | ection | | benchr | nark num | bers: M | arked d | ata are i | n the hig | hest 20 | l% of valu | ues foun | d by Ha | ınd et. al | , 1988. | | | | |-----|---------|----------|--------|------|--------|----------|-----------------|---------|-----------|-----------|---------|------------|-----------------|---------|------------|---------|------|-------|-------| | | | | July | 2018 | | | | | Augus | t 2018 | | | September 2018 | | | | | | | | | NO2 | NO3 | NH3 | TKN | T-N | T-P04 | NO2 | NO3 | NH3 | TKN | T-N | T-P04 | NO2 | NO3 | NH3 | TKN | T-N | T-P04 | Avg | | | <1.0 | <1.0 | none | set | <2.0 | <0.46 | < 1.0 | <1.0 | none | set | <2.0 | <0.46 | < 1.0 | <1.0 | none | e set | <2.0 | <0.46 | TSI | | 3F | bd | 0.11 | 0.05 | 0.7 | 0.7 | 0.14 | | | | | | | | | | | | | 50.59 | | 5D | | | | | | | bd | bd | 0.09 | 0.9 | 0.9 | 0.12 | | | | | | | 63.18 | | 6F | bd | bd | 0.05 | 1.1 | 1.1 | 0.26 | bd | bd | 0.09 | 1.2 | 1.2 | 0.28 | bd | bd | 0.09 | 0.1 | 0.1 | 0.27 | 44.19 | | 7E | bd | 0.16 | 0.05 | 0.9 | 0.9 | 0.24 | | | | | | | | | | | | | 68.70 | | 10C | bd | 0.07 | 0.05 | 0.6 | 0.6 | 0.11 | bd | bd | 0.09 | 0.6 | 0.6 | 0.09 | | | | | | | 48.36 | | 11E | bd | bd | 0.09 | 14.0 | 14.0 | 1.17 | | | | | | | | | | | | | 92.74 | | 16E | bd | bd | 0.09 | 0.4 | 0.4 | 0.02 | bd | bd | 0.09 | 0.5 | 0.5 | 0.03 | bd | bd | 0.09 | 0.09 | 0.1 | 0.02 | 44.65 | | 16H | bd | bd | 0.09 | 0.4 | 0.4 | 0.02 | | | | | | | | | | | | | 37.59 | | 18J | | | | | | | bd | bd | 0.09 | 0.4 | 0.4 | 0.05 | bd | bd | 0.09 | 0.09 | 0.1 | 0.04 | 44.86 | | 18K | bd | bd | 0.09 | 0.5 | 0.5 | 0.04 | bd | bd | 0.09 | 0.5 | 0.5 | 0.05 | bd | bd | 0.09 | 0.09 | 0.1 | 0.04 | 49.13 | | 18M | | | | | | | bd | bd | 0.09 | 0.6 | 0.6 | 0.07 | bd | bd | 0.09 | 0.1 | 0.1 | 0.06 | 44.37 | | 19D | | | | | | | bd | bd | 0.09 | 1.9 | 1.9 | 0.30 | | | | | | | 77.86 | | 19K | bd | bd | 0.09 | 1.8 | 1.8 | 0.26 | | | | | | | bd | 0.10 | 0.09 | 0.7 | 0.8 | 0.24 | 63.80 | | 21D | bd | bd | 0.09 | 0.6 | 0.6 | 0.10 | bd | bd | 0.09 | 0.7 | 0.7 | 0.11 | | | | | | | 54.28 | | 28D | bd | bd | 0.09 | 0.3 | 0.3 | 0.04 | bd | bd | 0.09 | 2.5 | 2.5 | 0.12 | bd | bd | 0.09 | 0.1 | 0.1 | 0.05 | 51.36 | | 38B | bd | bd | 0.09 | 0.6 | 0.6 | 0.03 | | | | | | | bd | bd | 0.09 | 0.1 | 0.1 | 0.03 | 41.23 | | 41B | bd | bd | 0.09 | 0.7 | 0.7 | 0.04 | bd | bd | 0.09 | 0.5 | 0.5 | 0.03 | bd | bd | 0.09 | 0.1 | 0.1 | 0.03 | 31.05 | | 45D | bd | bd | 0.09 | 0.5 | 0.5 | 0.02 | bd | bd | 0.09 | 0.5 | 0.5 | 0.03 | bd | bd | 0.09 | 0.1 | 0.1 | 0.03 | 40.83 | | 48A | bd | bd | 0.09 | 0.5 | 0.5 | 0.01 | bd | bd | 0.09 | 0.4 | 0.4 | 0.02 | bd | bd | 0.09 | 0.1 | 0.1 | 0.03 | 38.47 | | 581 | bd | bd | 0.09 | 0.8 | 0.8 | 0.03 | | | | | | | bd | bd | 0.09 | 0.1 | 0.1 | 0.03 | 38.52 | | 58J | bd | bd | 0.09 | 1.1 | 1.1 | 0.03 | bd | bd | 0.09 | 1.1 | 1.1 | 0.05 | bd | bd | 0.09 | 0.1 | 0.1 | 0.05 | 45.44 | | 59C | bd | bd | 0.09 | 0.7 | 0.7 | 0.02 | bd | bd | 0.09 | 0.5 | 0.5 | 0.04 | bd | bd | 0.09 | 0.1 | 0.1 | 0.03 | 41.24 | | 59D | bd | bd | 0.09 | 0.6 | 0.6 | 0.02 | | | | | | | bd | bd | 0.09 | 0.1 | 0.1 | 0.03 | 44.26 | | 64B | | | | | | | bd | 0.14 | 0.09 | 0.7 | 0.84 | 0.14 | | | | | | | 45.27 | | 65C | bd | bd | 0.09 | 1.6 | 1.6 | 0.13 | bd | 0.06 | 0.09 | 1.0 | 1.06 | 0.14 | 0.05 | 0.20 | 0.09 | 0.1 | 0.1 | 0.22 | 52.15 | | |-------------|--------------|--------------|----------|-----------------------------|---------|--|----|------|------|------|------|---|------------|-----------------------|------------|------------|----------|-----------|-------|--| | 66D | bd | bd | 0.09 | 0.9 | 0.9 | 0.03 | bd | bd | 0.09 | 0.9 | 0.9 | 0.14 | bd | bd | 0.09 | 0.1 | 0.1 | 0.07 | 44.47 | | | 71B | bd | bd | 0.09 | 0.9 | 0.9 | 0.07 | bd | bd | 0.09 | 0.7 | 0.7 | 0.04 | bd | bd | 0.09 | 0.1 | 0.1 | 0.10 | 48.37 | | | 72C | bd | bd | 0.09 | 0.8 | 0.8 | 0.09 | bd | bd | 0.09 | 0.8 | 0.8 | 0.06 | | | | | | | 72.36 | | | 72E | bd | bd | 0.09 | 0.8 | 0.8 | 0.09 | | | | | | | | | | | | | 48.74 | | | 74C | bd | bd | 0.09 | 0.8 | 0.8 | 0.08 | | | | | | | | | | | | | 50.92 | | | 82A | bd | bd | 0.09 | 0.8 | 0.8 | 0.03 | bd | bd | 0.09 | 0.8 | 0.8 | 0.05 | bd | bd | 0.09 | 0.1 | 0.1 | 0.05 | 50.73 | | | 83C | bd | bd | 0.09 | 1.0 | 1.0 | 0.02 | | | | | | | bd | bd | 0.09 | 0.1 | 0.1 | 0.04 | 37.84 | | | 89A | bd | 0.06 | 0.09 | 1.5 | 1.5 | 0.29 | bd | bd | 0.09 | 1.0 | 1.0 | 0.21 | | | | | | | 66.67 | | | 90A | bd | bd | 0.09 | 1.3 | 1.3 | 0.05 | bd | bd | 0.09 | 1.0 | 1.0 | 0.03 | | | | | | | 59.54 | | | Median | | 0.09 | 0.09 | 0.80 | 0.80 | 0.04 | | 0.10 | 0.09 | 0.70 | 0.80 | 0.06 | | 0.15 | 0.09 | 0.09 | 0.09 | 0.04 | 48.37 | | | Max | | 0.16 | 0.09 | 14.00 | 14.00 | 1.17 | | 0.14 | 0.09 | 2.50 | 2.50 | 0.30 | | 0.20 | 0.09 | 0.70 | 0.80 | 0.27 | 92.74 | NO2 = | Nitrite (ind | organic) | | = Total Kj
n (organic | | High levels of nutrients in our canals can indicate the presence of fertilizer | | | | | | TSI = Tro | phic Sta | te Index, | a quick i | indicator | of cana | l health. | rsı = | | | N03 = 1 | Nitrate (in | organic) | | : Total Nitr
ganic + org | | runoff or effluent from wastewater or
septic systems. Excessive nutrients | | | | | | Trophic State Index, a quick indicator of canal health. A total of 27 sites this quarter scored as GOOD (<60). 4 sites | | | | | | | 25 | | | NH3 = Ai | mmonia (i | norganic) | TP04 = | = Total Ph | osphate | can lead to nuisance plant growth and algal blooms. | | | | | | scored FAIR (60-70), and 3 scored POOR (>70). Summer 2018 was a challenging time for water quality for much of South Florida. Red tide conditions continued off the coast in the | | | | | | | | | | All nutrien | t concent | trations sho | wn in mg | /L | | | | | | | | Gulf of Mexico for all of SW Florida. The Caloosahatchee River was | 1 | | | ter relea | | | | | | | | | | | | | | | | | | | ample r | ainfall fo | or the are | a, the sta | ate of the | River co | ntinued | to | | | | | | | | | | | | | | | | | • | cteria an | | | | /e | | | | | | | | | | | | | | | | | | nis repor | from ups
r tempera | stream, a | dryer, co | ooler we | ather pa | ttern | | | | | | | | | | | | | | | and coo | ier water | tempera | itures. | nbers: Marked data are in the highest 20% of val | | | | | | | | | | | | | |-----|------|------|--------|---------|------|-------|-----------------|--|--------|--------|------|-------|----------------|------|------|-------|------|-------|-------|--| | | | | Octobe | er 2018 | | | | | lovemb | er 201 | В | | September 2018 | | | | | | | | | | NO2 | NO3 | NH3 | TKN | T-N | T-P04 | NO2 | NO3 | NH3 | TKN | T-N | T-P04 | NO2 | NO3 | NH3 | TKN | T-N | T-P04 | | | | | <1.0 | <1.0 | none | e set | <2.0 | <0.46 | < 1.0 | <1.0 | none | e set | <2.0 | <0.46 | <1.0 | <1.0 | none | e set | <2.0 | <0.46 | TSI | | | 3F | bd | bd | 0.1 | 0.6 | 0.6 | 0.11 | bd | bd | 0.1 | 0.1 | 0.1 | 0.12 | | | | | | | 37.61 | | | 5D | bd | bd | 0.1 | 0.7 | 0.75 | 0.19 | bd | bd | 0.1 | 0.7 | 0.7 | 0.12 | bd | bd | 0.1 | 0.4 | 0.4 | 0.10 | 45.05 | | | 5H | | | | | | | | | | | | | bd | bd | 0.1 | 0.7 | 0.7 | 0.10 | 48.94 | | | 6F | bd | bd | 0.1 | 0.6 | 0.6 | 0.25 | bd | bd | 0.1 | 0.1 | 0.1 | 0.15 | bd | bd | 0.1 | 0.4 | 0.4 | 0.13 | 42.26 | | | 7E | | | | | | | | | | | | | bd | bd | 0.1 | 0.3 | 0.3 | 0.14 | 34.89 | | | 10C | | | | | | | bd | bd | 0.1 | 0.1 | 0.1 | 0.12 | bd | bd | 0.1 | 0.5 | 0.5 | 0.08 | 37.50 | | | 11E | bd | 0.27 | 0.1 | 0.5 | 0.77 | 0.25 | bd | bd | 0.1 | 0.2 | 0.2 | 0.16 | bd | bd | 0.1 | 0.6 | 0.6 | 0.15 | 52.74 | | | 12H | bd | 0.11 | 0.1 | 0.6 | 0.71 | 0.22 | bd | bd | 0.1 | 0.2 | 0.2 | 0.14 | bd | bd | 0.1 | 0.4 | 0.4 | 0.15 | 41.08 | | | 16E | bd | bd | 0.1 | 0.4 | 0.4 | 0.03 | bd | bd | 0.1 | 0.4 | 0.4 | 0.05 | bd | bd | 0.1 | 0.6 | 0.6 | 0.03 | 39.61 | | | 16H | bd | bd | 0.1 | 0.2 | 0.2 | 0.03 | bd | bd | 0.1 | 0.5 | 0.5 | 0.08 | | | | | | | 34.48 | | | 18J | bd | bd | 0.1 | 0.3 | 0.3 | 0.06 | bd | 0.13 | 0.1 | 0.3 | 0.3 | 0.05 | bd | 0.20 | 0.1 | 0.5 | 0.5 | 0.04 | 50.63 | | | 18K | | | | | | | bd | bd | 0.1 | 0.2 | 0.2 | 0.06 | bd | 0.07 | 0.1 | 0.6 | 0.6 | 0.06 | 47.62 | | | 18L | bd | bd | 0.1 | 0.6 | 0.6 | 0.18 | bd | bd | 0.1 | 0.2 | 0.2 | 0.15 | bd | bd | 0.1 | 0.5 | 0.5 | 0.18 | 45.37 | | | 18M | bd | bd | 0.1 | 0.3 | 0.3 | 0.07 | bd | bd | 0.1 | 0.4 | 0.4 | 0.07 | bd | 0.10 | 0.1 | 0.5 | 0.5 | 0.06 | 44.59 | | | 19D | bd | bd | 0.1 | 1.3 | 1.3 | 0.34 | bd | bd | 0.1 | 0.1 | 0.1 | 0.16 | bd | bd | 0.1 | 0.5 | 0.5 | 0.35 | 44.41 | | | 19K | bd | bd | 0.1 | 1.1 | 1.1 | 0.26 | bd | bd | 0.1 | 0.1 | 0.1 | 0.17 | bd | bd | 0.1 | 0.5 | 0.5 | 0.22 | 38.92 | | | 21D | bd | bd | 0.1 | 0.3 | 0.3 | 0.14 | bd | bd | 0.1 | 0.2 | 0.2 | 0.14 | bd | bd | 0.1 | 0.4 | 0.4 | 0.14 | 35.70 | | | 28D | bd | bd | 0.1 | 0.2 | 0.2 | 0.04 | bd | bd | 0.1 | 0.5 | 0.5 | 0.05 | bd | bd | 0.1 | 0.5 | 0.5 | 0.06 | 38.24 | | | 38B | bd | bd | 0.1 | 0.4 | 0.4 | 0.05 | bd | bd | 0.1 | 0.4 | 0.4 | 0.05 | | | | | | | 12.51 | | | 41B | bd | bd | 0.1 | 0.4 | 0.4 | 0.05 | bd | bd | 0.1 | 0.5 | 0.5 | 0.05 | bd | bd | 0.1 | 0.5 | 0.5 | 0.04 | 44.14 | | | 45D | bd | bd | 0.1 | 0.2 | 0.2 | 0.03 | bd | bd | 0.1 | 0.1 | 0.1 | 0.06 | bd | bd | 0.1 | 0.4 | 0.4 | 0.02 | 29.58 | | | 48A | | | | | | | bd | bd | 0.1 | 0.6 | 0.6 | 0.05 | bd | bd | 0.1 | 0.3 | 0.3 | 0.02 | 44.53 | | | 581 | bd | bd | 0.1 | 0.3 | 0.3 | 0.03 | bd | bd | 0.1 | 0.2 | 0.2 | 0.12 | bd | bd | 0.1 | 0.5 | 0.5 | 0.18 | 40.75 | | | 58J | bd | bd | 0.1 | 0.6 | 0.6 | 0.05 | bd | bd | 0.1 | 0.8 | 0.8 | 0.10 | bd | bd | 0.1 | 0.6 | 0.6 | 0.14 | 49.88 | | | 59C | bd | bd | 0.1 | 0.3 | 0.3 | 0.04 | bd | bd | 0.1 | 0.1 | 0.1 | 0.09 | bd | bd | 0.1 | 0.5 | 0.5 | 0.07 | 39.16 | | | 59D | bd | bd | 0.1 | 0.6 | 0.6 | 0.07 | bd | bd | 0.1 | 0.5 | 0.5 | 0.13 | bd | bd | 0.1 | 0.5 | 0.5 | 0.13 | 43.48 | | | 64B | bd | 0.11 | 0.1 | 0.2 | 0.31 | 0.15 | | | | | | | | | | | | | 34.34 | | | 64F | bd | 0.09 | 0.1 | 0.2 | 0.29 | 0.18 | | | | | | | | | | | | | 40.19 | |--|------------------------------|-----------------------|---------------------------|---|-----------------------------|----------------------------|--|--|--|---------------------------------|------|--|--|---|---|--|---|--|--| | 65C | bd | bd | 0.1 | 0.3 | 0.3 | 0.18 | | | | | | | | | | | | | 22.92 | | 66D | bd | bd | 0.1 | 0.3 | 0.3 | 0.07 | bd | bd | 0.1 | 0.5 | 0.5 | 0.07 | bd | bd | 0.1 | 0.5 | 0.5 | 0.05 | 49.47 | | 69A | | | | | | | bd | bd | 0.1 | 0.8 | 0.8 | 0.19 | bd | bd | 0.1 | 0.7 | 0.7 | 0.18 | 50.32 | | 71B | | | | | | | bd | 0.07 | 0.1 | 0.2 | 0.2 | 0.11 | | | | | | | 24.13 | | 72C | bd | bd | 0.1 | 0.3 | 0.3 | 0.13 | bd | bd | 0.1 | 0.2 | 0.2 | 0.11 | | | | | | | 40.35 | | 72E | bd | bd | 0.1 | 4.8 | 4.8 | 0.13 | bd | bd | 0.1 | 0.3 | 0.3 | 0.12 | bd | bd | 0.1 | 0.7 | 0.7 | 0.09 | 47.79 | | 74C | bd | bd | 0.1 | 0.2 | 0.2 | 0.15 | bd | bd | 0.1 | 0.3 | 0.3 | 0.14 | bd | bd | 0.1 | 0.6 | 0.6 | 0.12 | 41.43 | | 82A | bd | bd | 0.1 | 0.3 | 0.3 | 0.06 | bd | bd | 0.1 | 0.4 | 0.4 | 0.06 | bd | bd | 0.1 | 0.4 | 0.4 | 0.03 | 48.75 | | 83C | bd | bd | 0.1 | 0.4 | 0.4 | 0.05 | bd | bd | 0.1 | 0.2 | 0.2 | 0.06 | | | | | | | 42.93 | | 89A | bd | bd | 0.1 | 0.6 | 0.8 | 0.26 | bd | bd | 0.1 | 0.4 | 0.4 | 0.20 | bd | bd | 0.1 | 0.7 | 0.7 | 0.23 | 55.01 | | 90A | | | | | | | bd | bd | 0.1 | 0.8 | 0.8 | 0.08 | bd | bd | 0.1 | 0.6 | 0.60 | 0.03 | 51.80 | | Median | 1 | bd | 0.10 | 0.40 | 0.40 | 0.07 | | bd | 0.10 | 0.30 | 0.30 | 0.10 | | 0.10 | bd | 0.50 | 0.50 | 0.10 | 42.26 | | Max | | 0.27 | 0.10 | 4.80 | 4.80 | 0.34 | | 0.13 | 0.10 | 0.80 | 0.80 | 0.20 | | 0.20 | 0.10 | 0.70 | 0.70 | 0.35 | 55.01 | NO2 = Nitrite (inorganic) TKN = Total Kjeldahl Nitrogen (organic + NH4) | NO2 = | Nitrite (ind | organic) | | | | _ | | | s in our o | | | TSI = Tro | phic Sta | te Index, | a quick i | indicator | of cana | l health. | TSI = | | | Nitrite (ind
Nitrate (ind | | Nitroge
TN = | | + NH4)
rogen | can in
runoff
septic | dicate the
or efflue
system | ne prese
ent from
s. Exce | nce of fe
wastewa
essive nu | rtilizer
Iter or
Itrients | | Trophic
A total o | State Inc
of 27 site | dex, a qui
s this qu | ick indica
arter sco | ator of ca
ored as G | anal heal
OOD (<6 | th. | | | NO3 = I | | organic) | Nitroge
TN =
(inorg | n (organic
= Total Niti | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic
A total o
scored F
Summer | State Inc
of 27 site
AIR (60-
2018 wa | dex, a qui
s this qu
70), and
as a chal | ick indica
arter sco
3 scored
lenging t | ator of ca | anal heal
OOD (<60
>70).
vater qua | th.
0). 4 site | es
much of | | NO3 = I | Nitrate (in | organic) | Nitroge
TN =
(inorg | n (organic
= Total Nitr
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic
A total o
scored F
Summer
South Fl | State Inc
of 27 site
AIR (60-
2018 wa
orida. Re | dex, a qui
s this qu
70), and
as a chal
ed tide co | ick indica
arter sco
3 scored
lenging to
anditions | ator of ca
ored as G
d POOR ()
ime for w | anal heal
OOD (<60
>70).
vater qua
ed off the | th.
0). 4 site
ality for r
e coast in | es
much of
n the | | NO3 = I | Nitrate (in | organic)
norganic) | Nitroge
TN =
(inorg | n (organic
= Total Nitr
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic
A total of
scored F
Summer
South Fl
Gulf of N
still infl | State Inc
of 27 site
FAIR (60-
2018 wa
orida. Re
Mexico fo
uenced b | dex, a qui
s this qu
70), and
as a chal
ed tide co
or all of S
by the wa | ick indica
arter sco
3 scored
lenging to
anditions
SW Florid
ter relea | ator of ca
ored as G
I POOR (2
ime for v
continue
da. The Ca
ses up st | enal heal
OOD (<60
>70).
vater qua
ed off the
aloosaha
ream, an | th. 0). 4 site lity for recoast in atchee Ri d combi | es
much of
n the
iver was
ned with | | NO3 = I | Nitrate (in | organic)
norganic) | Nitroge
TN =
(inorg | n (organic
= Total Nitr
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic A total of scored F Summer South FI Gulf of N still infl | State Inc
of 27 site
AIR (60-
2018 wa
orida. Re
Mexico fo
uenced b
ainfall fo | dex, a qui
s this qu
70), and
as a chal
ed tide co
or all of S
by the wa
or the are | ick indica
arter sco
3 scored
lenging to
anditions
SW Florid
ter relea
ea, the sta | ator of ca
ored as G
d POOR ()
ime for w
s continu
da. The Co
ses up st
ate of the | anal heal
OOD (<60
>70).
vater qua
ed off the
aloosaha
ream, an
River co | th. O). 4 site elity for recoast in atchee Ri ed combinationed | es
much of
n the
iver was
ned with
to | | NO3 = I | Nitrate (in | organic)
norganic) | Nitroge
TN =
(inorg | n (organic
= Total Nitr
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic A total of scored F Summer South FI Gulf of N still infl ample re deterior | State Income | dex, a qui
s this qu
70), and
as a chal
ed tide co
or all of S
by the wa
or the are
Cyanoba | ick indica
arter sco
3 scored
lenging to
anditions
SW Florid
ter relea
ea, the sta | ator of ca
ored as G
d POOR ()
ime for w
s continue
da. The Ci
ses up st
ate of the | anal heal
OOD (<60
>70).
vater qua
ed off the
aloosaha
ream, an
River co
de condit | th. O). 4 site elity for re coast in atchee Ri d combinations have | much of
n the
iver was
ned with
to
ve | | NO3 = I | Nitrate (in | organic)
norganic) | Nitroge
TN =
(inorg | n (organic
= Total Nitt
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve | State Income | dex, a qui
s this qu
70), and
as a chal
ed tide co
or all of S
by the wa
or the are
Cyanoba
time of th | ick indica
arter sco
3 scored
lenging to
anditions
SW Florid
ter relea
ea, the sta
cteria an
his repor | ator of ca
ored as G
d POOR ()
ime for w
s continue
da. The Ca
ses up st
ate of the
nd Red Tio
t. This is | anal heal
OOD (<60
>70).
vater qua
ed off the
aloosaha
ream, an
River co
de condit
attribute | th. O). 4 site ality for recoast in atchee Ri at combinations have | much of
n the
iver was
ned with
to
ve | | NO3 = I | Nitrate (in | organic)
norganic) | Nitroge
TN =
(inorg | n (organic
= Total Nitt
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve decreas | State Income | dex, a qui
s this qu
70), and
as a chal
ed tide co
or all of S
by the wa
or the are
Cyanoba
time of th
from ups | ick indica
arter sco
3 scored
lenging to
nditions
SW Florid
ter relea
ea, the sta
cteria ar
nis repor
stream, a | ator of ca
ored as G
d POOR ()
ime for w
s continue
da. The Ci
ses up st
ate of the | anal heal
OOD (<60
>70).
vater qua
ed off the
aloosaha
ream, an
River co
de condit
attribute | th. O). 4 site ality for recoast in atchee Ri at combinations have | much of
n the
iver was
ned with
to
ve | | NO3 = I | Nitrate (in | organic)
norganic) | Nitroge
TN =
(inorg | n (organic
= Total Nitt
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
Iter or
Itrients | | Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve decreas | State Income | dex, a qui
s this qu
70), and
as a chal
ed tide co
or all of S
by the wa
or the are
Cyanoba
time of th | ick indica
arter sco
3 scored
lenging to
nditions
SW Florid
ter relea
ea, the sta
cteria ar
nis repor
stream, a | ator of ca
ored as G
d POOR ()
ime for w
s continue
da. The Ca
ses up st
ate of the
nd Red Tio
t. This is | anal heal
OOD (<60
>70).
vater qua
ed off the
aloosaha
ream, an
River co
de condit
attribute | th. O). 4 site ality for recoast in atchee Ri at combinations have | much of
n the
iver was
ned with
to
ve | | NO3 = I | Nitrate (in | organic)
norganic) | Nitroge
TN =
(inorg | n (organic
= Total Nitt
ganic + org
= Total Ph | : + NH4)
rogen
ganic) | can in
runoff
septic | dicate the
or efflue
system
ad to nui | ne prese
ent from
s. Exce
sance p | nce of fe
wastewa
essive nu
lant grov | rtilizer
ater or
trients | | Trophic A total of scored F Summer South FI Gulf of N still infl ample ra deterior improve decreas | State Income | dex, a qui
s this qu
70), and
as a chal
ed tide co
or all of S
by the wa
or the are
Cyanoba
time of th
from ups | ick indica
arter sco
3 scored
lenging to
nditions
SW Florid
ter relea
ea, the sta
cteria ar
nis repor
stream, a | ator of ca
ored as G
d POOR ()
ime for w
s continue
da. The Ca
ses up st
ate of the
nd Red Tio
t. This is | anal heal
OOD (<60
>70).
vater qua
ed off the
aloosaha
ream, an
River co
de condit
attribute | th. O). 4 site ality for recoast in atchee Ri at combinations have | much of
n the
iver was
ned with
to
ve | ## **Upcoming Events** Keep Lee County Beautiful and its sponsors are holding their annual Great American Cleanup. This cleanup event will take place on April 13th at numerous locations throughout the County. For more information and registration for the event, please use the link below or contact KLCB at (239) 334- 3488. The Great American Cleanup is a great way to help your community and the environment. http://www.klcb.org/great-american-cleanup.html **Spring plant sale and rain barrel workshop at Rotary Park.** Come celebrate spring with a variety of plants! On April 20th at Rotary Park, native, edible, and butterfly attracting will be among the many different plants offered. Don't miss out on this one day only sale. Accompanying the plant sale is the rain barrel workshop. Lee County Master Gardeners will be on hand to teach about the benefits of collecting and storing stormwater for home use. Pre-registration required. The rain barrel course and one rain barrel is \$45 per person. For more information on both the plant sale and the rain barrel workshop, please contact Rotary Park at 239-549-4606. City of Cape Coral Environmental Resources Division C/O Canalwatch Volunteer Program P.O. Box 150027 Cape Coral, FL 33915